eFTC-161001
Non-Equilibrium and Quasi-Equilibrium Statistical Field Dynamics in Rigged Hilbert Space |
||
Author: Y. Leblanc (eFieldTheory.COM) Email: AbstractStatistical Field Dynamics (SFD) is re-expressed in a complex energy basis within rigged Hilbert space (RHS), both in the non-equilibrium and quasi-equilibrium cases. We show that, in the context of perturbation theory, the so-called Nakamura-Yamanaka renormalization condition is equivalent to the Chu-Umezawa diagonalization condition and leads to a consistent SFD in the quasi-equilibrium limit, characterized by an exact spectral density function given by the Nakanishi complex delta function on the renormalized energy shell. The Nakanishi complex delta function is in fact the exact spectral density function of all interacting Quantum Field Theories (QFT) in RHS. Applications range from the Gamow nuclear shell model to alpha or clusters condensation in nuclei, Bose-Einstein condensation (BEC) in trapped atomic gases or multifragmentation in heavy ions collisions. Copyright © 2016 Yvan Leblanc. All rights reserved
PACS: 05.30.Ch, 03.70.+k, 11.10.Gh Cite as: Leblanc, Y., "Non-Equilibrium and Quasi-Equilibrium Statistical Field Dynamics in Rigged Hilbert Space", manuscript no. eFTC-161001 (2016). http://www.efieldtheory.com/abs/?eFTC-161001; doi:10.13140/RG.2.2.10398.95047. |
||
|
||
|
||
|